Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions.

نویسندگان

  • Claudio A Morgado
  • Petr Jurecka
  • Daniel Svozil
  • Pavel Hobza
  • Jirí Sponer
چکیده

We have performed reference quantum-chemical calculations for about 130 structures of adenine dimers in stacked conformations, with special attention given to dimers that are either vertically compressed (parallel structures) or contain close interatomic contacts (non-parallel structures). Such geometries are sampled during thermal fluctuations of nucleic acids and contribute to the local conformational variability of these systems. Their theoretical characterization requires a good description of interaction energies in the short-range repulsion region. The reference calculations have been performed with the CBS(T) method, i.e., MP2/CBS computations corrected for higher-order electron-correlation effects using the CCSD(T) method. These benchmark data have been used to examine the performance of the DFT-D, SCS(MI)-MP2, MP2.5, M06-2X and CBS(SCS-D) quantum-mechanical methods, and of the AMBER Cornell et al. force field. The present results, as well as those of our previous study on stacked uracil dimers, confirm that the force field severely exaggerates the repulsion at short intermolecular distances. This behavior complicates the use of the force field in scans of the stacking-energy dependence on local conformational parameters in nucleic acids. Compared against the previous results obtained in the uracil dimer study, the performance of DFT-D to describe stacking at short intermolecular distances has worsened, showing for the adenine dimers a larger exaggeration of the repulsion, especially for structures where the monomers are parallel to each other. Despite these deviations, the performance of DFT-D is still reasonably good and this method provides, for example, a relatively inexpensive way to monitor stacking energies along molecular dynamics trajectories. The best performers are the MP2.5, SCS(MI)-MP2, and CBS(SCS-D) methods. In addition, the energy profiles given by the SCS(MI)-MP2 and CBS(SCS-D) methods are the ones that most closely resemble the CBS(T) data. Interestingly, the performance of the SCS(MI)-MP2 method for stacked adenine dimers is better than for stacked uracil dimers, indicating that the quality of the description may vary with the nucleobase composition. Even though the SCS(MI)-MP2 method cannot match the speed of DFT-D, the results so far render it a promising tool to study intrinsic interactions in systems of moderate size. In general, for most applications all the QM methods tested here are of sufficient accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further analysis and comparative study of intermolecular interactions using dimers from the S22 database.

Accurate MP2 and CCSD(T) complete basis set (CBS) interaction energy curves (14 points for each curve) have been obtained for 20 of the dimers reported in the S22 set and analytical Morse curves have been fitted that can be used in developing updated density functional theory (DFT) and force field models. The magnitude and the effect of the basis set superposition error (BSSE) were carefully in...

متن کامل

Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description.

We have carried out reference quantum-chemical calculations for about 100 geometries of the uracil dimer in stacked conformations. The calculations have been specifically aimed at geometries with unoptimized distances between the monomers including geometries with mutually tilted monomers. Such geometries are characterized by a delicate balance between local steric clashes and local unstacking ...

متن کامل

On the method-dependence of transition state asynchronicity in Diels-Alder reactions.

This work discusses the dependence of transition state geometries on the choice of quantum chemical optimization method for the extensively studied Diels-Alder reaction. Rather significant differences are observed between post-Hartree-Fock methods and (hybrid) density functional theory, where the latter predicts larger asynchronicities. The results show that the low MP2 asynchronicity observed ...

متن کامل

Conformational properties of 1-silyl-1-silacyclohexane, C(5)H(10)SiHSiH(3): gas electron diffraction, low-temperature NMR, temperature-dependent Raman spectroscopy, and quantum chemical calculations (&).

The molecular structure of axial and equatorial conformers of 1-silyl-silacyclohexane, C(5)H(10)SiHSiH(3), and the thermodynamic equilibrium between these species were investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR), temperature-dependent Raman spectroscopy, and quantum chemical calculations (CCSD(T), MP2 and DFT methods). According to GED, the...

متن کامل

Ab initio calculations on halogen-bonded complexes and comparison with density functional methods

A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 14  شماره 

صفحات  -

تاریخ انتشار 2010